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I n  this paper three systems of evolution equations are presented which describe the 
free propagation of long continental shelf waves in the linear and weakly non- 
linear regime. Two different degrees of nonlinearity are considered: for the first the 
Borteweg-de Vries equation is found to govern the dynamics of the system in the 
case of a single energy-containing mode (theories by Smith 1972; Grimshaw 1977), 
whereas, for the second nonlinear range, a nonlinear hyperbolic equation is derived. 
The nonlinear interactions among shelf-wave modes are also considered : they are 
modelled through nonlinear coupling terms in the evolution equations. This theory 
allows the timescale for the development of dispersive and nonlinear effects to be 
determined for each parameter range. The amplitude ranges corresponding to linear 
and nonlinear shelf waves are evaluated for the Oregon and the East Australian 
shelves, and some qualitative conclusions on the importance of nonlinear effects are 
derived. Finally the case of a shelf with longshore variation in topography is analysed 
and coupling terms,in the evolution equations appear. They account for the scattering 
of energy between the various modes due to the linear and nonlinear interactions of 
the wave with the topographic changes. 

1. Introduction 
Continental shelf waves are subinertial waves confined to the continental shelf and 

propagating with the coast to the right in the Northern hemisphere. The first theory 
on shelf waves was proposed by Robinson (1964), who assumed the waves to be so 
long as to be non-dispersive. For shorter wavelengths the waves become dispersive 
(Mysak 1968; Buchwald & Adams 1968). Fundamental articles on the generation of 
long shelf waves are by Adams & Buchwald (1969) and Gill & Schumann (1974). 
Mysak (1980) reviews recent developments in the research on shelf-wave dynamics. 

In  most papers the equations are linearized, this being justifiable in many 
situations owing to the small size of the Rossby number for shelf waves. Nonetheless 
there are some typically nonlinear problems which have been dealt with in the 
literature. In  a paper by Hsieh & Mysak (1980) the resonant interaction between 
shelf waves is analysed. A theory of the sideband instability and long-wave resonance 
for shelf waves is available (Grimshaw, 1 9 7 7 ~ ) .  Nonlinear effects can also lead to 
solitary-wave solutions. Smith (1972) and Grimshaw (1977 b )  developed two com- 
plementary theories where nonlinearity and dispersion balance out exactly, and a 
nonlinear evolution equation where the dispersive term was modelled through a 
pseudodifferential operator, and the Korteweg-de Vries equation was found to give 
the time evolution of the amplitude of the shelf wave. 
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However, in these last two treatments only the evolution of a single wave mode 
is dealt with (i.e. the wave energy is assumed to be contained in only one mode). 
Therefore the most general initial-value problem, for which the energy is necessarily 
spread over the various modes, can only be treated by a more general analysis. 

In  this paper a system of nonlinear evolution equations is proposed, which gives 
the time evolution of the most general initial condition for free continental shelf 
waves. Such equations contain nonlinear interaction terms coupling the various 
modes. Two degrees of nonlinearity are considered. For the first one t'he equations 
reduce to the Korteweg-de Vries equation on the assumption of a single shelf-wave 
mode (Grimshaw 1977b). For the second one (stronger nonlinearities) they reduce to 
a nonlinear hyperbolic equation on the same assumption. A discussion on the 
importance of nonlinear effects for shelf waves in connection with the results of this 
treatment is also presented. 

Another problem dealt with here is the effect of dispersion and nonlinearities on 
the scattering of shelf waves by longshore variations in bottom topography. Allen 
(1976) and Hsueh (1980) studied this kind of scattering in the linear approximation 
and assuming lack of phase dispersion (very long waves). tJnder tjhese conditions they 
found that, although most longshore depth changes provide a scattering of energy 
between the various modes, a class of bottom topographies (denoted as ' shelf-similar ') 
exists, for which no scattering occurs. Here it is shown that' the requirement that shelf 
waves be linear and non-dispersive is critical for this property to hold. Indeed a system 
of equations is presented which applies to linear/waakly dispersive and nonlinear shelf 
waves in the case of a shelf-similar bottom topography, where it appears that  the 
modes are coupled as a consequence of such a longshore variation in topography, so 
that scat,tering does occur. 

2. Governing equations 

shallow-water equations (Le Blond & Mysak 1978) : 
The dynamics of unforced, barotropic continental shelf waves is governed by the 

- 

ai+atiz+zs'ig-f8 = -g&, ( l a )  

where f can be taken as constant (Buchwald & Adams 1968). The variables and 
L? are the velocity components in the onshore (3) and alongshore (tj) directions 
respectively, c is the surface elevation and H is the undisturbed water depth - see 
figure 1 (we shall consider cases where H > 0).  If T is the timescale (i.e. t = Tt, where 
henceforth letters without bars denote the non-dimensionalized variables), we have 
assumed for shelf waves 1 

c = - < l  
f T  

As we want to perform an expansion of the surface elevation in powers of E ,  we pass 
to non-dimensional variables : 

E = Lx, g = Ly y = - y, 
E 

(3) 
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FIGURE 1. Definition of 2, y, <, H ,  L. 

The different length and velocity scales in the two spatial directions are introduced 
in order to model the scale anisotropy of shelf waves. Besides, the definition L, = L/e 
implies that  we are studying long waves. The onshore lengthscale L is given by the 
shelf width. Moreover, long shelf waves are known to be generated by the passage 
of large-scale weather systems (Gill & Schumann 1974)  whose dimension is 
O( 1000 km) ; therefore L, is of the same order of magnitude. Since the external Rossby 
deformation radius R = (gD)i/f = O( 1000 km) for a typical continental shelf, we 
choose 

L, = R. 

So for (3) we have that e coincides with the divergence parameter: 

This assumption simplifies the analysis considerably. In  order to achieve the balance 
between the O( 1)  terms in the non-dimensional version of (1  a )  we find 

where the notation 21‘ = eQD is introduced for the sake of convenience. From (3)-(5) 
we also see that 

u = eQ-lfL, v = eQ-ZfL. (6) 

Rewriting (1)  in terms of the non-dimensional variables and taking (3)-(6) into 
account, we get 

&%t+&Qv*vu-v = -Q, (7 a )  

v,+eQ-~V.Vv+u = -Q, (7 b )  

~ “ ~ + [ ( H + e Q ~ ) U ] x + [ ( H + € Q ~ ) V ] y  = 0, ( 7 c )  
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where V = (u ,  v ) .  Combining (7a ,  b )  in order to  express u and 21 as functions of the 
[-derivatives and substituting them in (7c) ,  we ultimately obtain 

e2ct+((H+€Qc) [ - ~ y - ~ z t + E 2 ( ~ , t t + ~ . z t t t ) + ~ Q - 2 ( ~ y : 2 / x x + ~ x t  Czz-CzCzy) 

+ o ( ~ Q ,  ~ * - - “ + ~ ) I L + w + ~ Q c )  [ c . z - - 2 ( ~ , t + ~ z t t ) + 0 ( € 4 ,  m, = 0, 
n = min [ q - 2 , 2 ]  = 1,2 .  (8) 

The terms O(@, E Q - ~ + ~ ,  c4) contain the velocity components and are always negligible 
in the cases studied, so (8) is one equation for one unknown ([) a t  the lowest order. 
The velocity components can be expressed in terms of [ as follows : 

u = - - Czt + O(e2, eQ-”, 

v = C x + 0 ( e 2 ) .  
(9) 

3. The evolution equations for the wave amplitude 

separately. 
3.1. Waves o n  uni form shelves 

In  order to derive the final evolution equations from (8) i t  is convenient to perform 
a Galilean transformation : 

In  this section the case of a uniform ( H ,  = 0) and non-uniform shelf are dealt with 

y’ = y+ct, x’ = x, 
where c is the phase speed of non-dispersive waves. I n  the following discussion we 
shall limit ourselves to a single energy-containing mode, the general case being 
studied later. I n  this moving reference frame the timescale T’ will be different from 
T. Let us define T = TIES, where s is still unknown. In  this new frame of reference 
the appropriate time variable will thus be 7 = eSt ,  so we have (the primes have been 
dropped) : 

Let us also expand [ as follows: 

ct = + cc,. 

[ = #(x) A(y, t )  + € W l ) ( X ,  y, t )  + . . .. (10) 

With these positions (8) a t  zeroth order in B gives 

H (I@’)’ = - - $. 
C 

The associated boundary conditions are 

I$’(O)l < W = const, 
, if H ( 0 )  = 0 * I I,.. lim # = 0. 

H u = O  ( x = O )  

lim [ =  0 
X + C C  

Equation (1 1 ) with these boundary conditions constitutes a classical Sturm-Liouville 
problem (Morse & Feshbach 1953). Therefore the $i(s)  form an orthogonal (with H 
as density function) and complete set of eigenfunctions with positive eigenvalues c-l 
(indeed shelf waves are right-bounded in the Northern Hemisphere - f> 0-) .  
Solutions of this eigenvalue problem are obtained, for particular depth profiles, by 
Mysak (1968). Finally we shall deal with normalized eigenfunrtions, i.e. 
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Taking now (10) and (1  1) into account and expanding @il) as 

20 1 

(8) gives 

+ ~q-'[[H($i $:+ ci$i$; - $i2)]'Ai Ai, + D = 0, (12) 
where D = O(eq, d-'+', cq-2+n, c2", c2', c4). If we multiply by $i and integrate over x 
we find 

(13) €'Ai7 + ?(ai At ,  +pi A i y y y )  + . F 2 y i  At Aiy  + D$i dx = 0, SP 
where at, pi and yi are defined in the Appendix. It is now clear that  s must be 

s = min [ 2 ,  p-21 = n,  

and then D < max [c2, cq-']]. Therefore, neglecting higher-order terms and coming 
back to the frame at  rest, from (13) wc finally get 

c ~ ( A ~ ,  - E i  Aty) +pi Atyyy = 0 (4  2 5 ;  s = 2), (14) 

~ - ' ( A i t - ~ ~ A A i y ) + P i A i Y y y + ~ i A i ~ 4 i y  = 0 (y = 4;  s = 2), (15) 

e - ' ( A , t - ~ i A , y ) + y i A , A , y = O  ( p = 3 ;  S =  l ) ,  (16) 
where Ei = ci -c2ai. 

relation is (in dimensional form) : 
Equation (14) describes linear weakly dispersive waves ; t8he corresponding dispersion 

= fL(Ei K + R ' E ) ,  

which holds for wavenumbers such that K d O(R-l) .  Equation (15) is the well-known 
Korteweg-de Vries equation, in which the exact balance between nonlinearity (which 
tends to steepen the wave) and dispersion (which tends to spread it) leads to  soliton 
solutions (e.g. Gardner et al. 1974). Moreover, an arbitrary initial condition evolves 
into a set of solitons plus a small dispersive tail. Solitonic behaviour is therefore 
expected for shelf waves whose energy is concentrated in only one mode and for the 
appropriate parameter range (q = 4). This result was previously obtained by Grimshaw 
(19773). Finally, (16) is a hyperbolic equation solvable implicitly by the method of 
characteristics (Whitham 1974) which leads to the progressive steepening of the 
wave and eventually to its breaking. 

So far we have made use of the rather unrealistic hypothesis (lo), whereas, for the 
more general initial-value problem, 5 needs to be defined as follows : 

c =  X c k  = ~ [ $ k A k + E S @ ~ ) +  ...]. (17) 
k k 

For y 2 5 each A ,  still evolves according to (14) owing to the linearity of the wave, 
but for p = 3,4  the various wave modes will interact nonlinearly. Performing a 
change of variable for each mode, 

substituting (17) in (8) and performing the same calculations as before, one gets, for 
4 = 4 ,  

ck t  == &' c k ~ +  ck cky, 

~ - ~ ( A i t - C i  A, , )+p ,  A iyyy++iAiAiy+  Z ~ j &  Aj 
j, k 

j + k  

= - Z { p k i ~ ( C k - ~ i )  + aik +bik A k y y y  + r t k  (18)  
k 

k * i  
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where the coeficients a i k ,  p i k ,  Y j k  are defined in the Appendix. But we know from the 
preceding analysis that  if a t  t = 0 there is only one energy-containing mode, say 1, 
the remaining modes have A ,  = 0 ( k  $: 1)  as solution, and this is only possible if the 
right-hand side of (18) is zero (this gives a relation between the unknown functions 
p k i  and the A k ) .  Therefore the following set of coupled evolution equations results: 

€-'(Ait--i Atu) +pi Aiyyy+Yi At Atu+ ;c. Y i k  Aj A,, = 0. (19) 
i, k 

i 9 k  

From (19) we see that, for the initial conditions of the form A k ( t  = 0) = 0 (k =I= l ) ,  the 
solution is given by Ak(t) = 0 ( k  4 l ) ,  whereas the variable A, satisfies (15). If, on the 
other hand, a t  the initial time two or more modes contain some energy, all the 
remaining modes will be forced by the nonlinear interaction terms 

So scattering of energy occurs among modes due to nonlinear interactions. A similar 
set of equations can be found for q = 3 as a generalization of (16) : 

€ - ' ( ~ i t - C i A i y ) + y t ~ i A i y +  yjk Aj A k y  = 0. (20 ) 
i, k 

j i k  

3.2. Waves on weakly non-uniform shelves 

In  the following we investigate the changes occurring in the analysis carried out in 
the preceding paragraph if a small-amplitude longshore variation in bottom topo- 
graphy is present. 

Suppose the function <(x,y) is defined so that the lines t (x ,y)  = const are depth 
contours (we would have 6 5 x for a uniform shelf). This definition implies 
H ( x ,  y )  = H ( 6 ) .  I n  the present case, where H depends on both spatial coordinates, i t  
is convenient to  pass to the new variables ( 6 , ~ )  where q 3 y. We have 

cy = cv + 6 y  & >  Q = 6 x  & >  
Hy = Ht&, H x  = H E x  (H' G HS). 

Let us start by considering the linear case (q  2 5 ) .  Performing the transformation 

(the primes have been dropped), and substituting 

in (8), we get a t  lowest order 

and a t  the second order (with (21) taken into account) 
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Equations (21) and (22) reduce to ( 1 1 )  and (12) (p 2 5, s = 2, single mode) respectively, 
in the limit 6 = x.  

At this stage we follow Allen (1976) in defining a small-amplitude longshore 
variation in bottom topography : 

5 = "+mx,y),  (23) 
where 8 is a small parameter, 8 < I .  This gives 

z I+Bh, % 1+Bh,, 

6, z Oh, z Oh,. 

Let us expand ck and $k in powers of 8: 

#k  = $Ok + ' # I k  + ...) 
ck = cok+Bc,k+....  

At lowest order in 8, (21) gives 

with the same boundary conditions as (11) .  Equation (24) is identical with (11); 
therefore the &(()  have the same functional form as the # k ( X )  of the 6 = 0 theory, 
that is (at lowest order) the eigenfunctions $ k ( ( )  (which we may denote as 'local' 
because they depend weakly on y)  adjust to the depth variation along the coast. 
Defining 

$lk  = ' k j  $Oj? 
5 

we obtain from (21), a t  first order in 8, 

Let us now examine the time evolution of 5, limiting ourselves to  bottom topo- 
graphies whose deformation offshore is linear in x,  i.e. 

h,, = 0 6 = x[i + B ~ ( ~ ) I .  (25) 
This kind of topography is denoted as 'shelf-similar' by Hsueh (1980) and does not 
give rise to scattering among modes for linear and non-dispersive shelf waves. 
However, in the following treatment we shall see that both weak dispersion and weak 
nonlinearity lead to mode coupling, and scattering will occur as a result. Thanks to 
(25) we have h 

= - COk h[, gkj = - $ s k j j  $jk = 0 (j 3 l , t / k ) .  
Ok 

Taking these relations into account one gets from (22) 

where the coefficients d ( l ) ,  d (2 )  and d(3)  are defined in the Appendix. This is a system 
of weakly coupled linear partial differential equations where the coupling coefficients 
depend on q. It reduces to (14) in the uniform-shelf case. The presence of the 
amplitudes A, of all the modes in the right-hand side of (26) provides the scattering 
of energy into different modes due to the interaction of the wave with the topography. 
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The equations generalizing (19) and (20) can be obtained in a similar way. They 
are 

c’( 1 + 2Bht) (Aft - Ei A,,) +pi + yi Ai At, + C yjk Aj A,, 
i, k 

i + k  

for q = 4 (see the Appendix for d ( 4 )  and d@)) ,  and 

i + k  

( 2 8 )  
for q = 3. They reduce to (19) and (20) respectively in the limit 0L-0. 

4. Discussion 
In  this section the orders of magnitude of the quantities appearing in the present 

analysis will be evaluated in some realistic examples, and some physical conclusions 
on the importance of nonlinear effects will be derived. 

Taking the width of the shelf as L = 5 x lo4 m and the depth as D = 250 m (a 
typical value for shelves with a steep continental slope) and f = s-l we have 
R = 500 km and e = lo-’. Relations (5) and (6) give N = 0.25 cm/s as the maximum 
order of magnitude of the free-surface elevation for linear waves (q  = 5) with a 
corresponding V = 0.5 cm/s for the amplitude of the longshore current fluctuations. 
The balance between nonlinearity and dispersion (q  = 4)  is achieved for N = 2.5 cm 
and V = 5 cm/s, whereas the wave front steepens (q = 3) above the minimum values 
N = 25 cm and V = 50 cm/s. The timescale for the development of dispersive and 
weakly nonlinear effects is Tkeak = T / e 2  x 10’ s x 100 days, whereas the steepening 
effects develop on a much shorter timescale: for q = 3 it  is Eirong = T/e  x lo6 s 
x 10 days. 

From this we see that the purely dispersive and combined weakly dispersiveweakly 
nonlinear effects are so weak for long continental shelf waves as to be negligible in 
most situations, ah least along terrestrial coasts (this had already been noted by Smith 
1972; Grimshaw 1977b). Indeed, if one considers the gravest mode and assumes 
c1 x 0.5, the ‘life’ of a free shelf wave for a coast of length 1 x 2000 km can be 
qife = l / c  = l/fLc x 10 days 4 Tkeak. 

SO, whcn they apply, (14) and (19) are basically equivalent to the simple linear, 
non-dispersive equation 

A,, - Et Ai, = 0. 

In  contrast, nonlinear effects of the hyperbolic kind ( q  = 3) may lead to a significant 
change in the shape of a free long shelf wave along a real coast, because, for instance in 
the present example, qife x TLtrong x 10 days; moreover, higher modes (k = 2 , 3 ,  ...) 
have smaller phase speeds and thus longer lives ; therefore for them these nonlinear 
effects are even more important. So, provided that Nstrong = e3D and Kstrong = f L e  
represent good length and velocity scales for non-dimensionalising cand Urespectively, 
the combined effects of the steepening of the wave front and of the scattering of energy 
among the modes due to nonlinear interactions are expected to develop in a 
sufficiently short time for them to be observed. 

It also appears that  the experimentally observed values of sea level and current 
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fluctuation amplitudes (roughly O( 10 cm) and O(  10 cm/s) respectively) are not far 
from the theoretical values for ‘strong’ waves (q = 3), so that such waves can actually 
be generated. But, in order to analyse this point more carefully, some realistic cases 
have to be considered. 

Let us consider two coasts along which continental shelf waves have been clearly 
identified, namely the Oregon and the East Australian coasts (e.g. Hsieh 1982 ; Hamon 
1962; Robinson 1964). The Buchwald-Adams (1968) exponential shelf profile 
H = Hoebx can be fitted to the real depth profiles off both the Oregon and the East 
Australian coasts : 

- 

Oregon : H = 104 eZ9 H,,, = 2840 m ( L  = 112 km) ; 
- 

East Australia : H = 23 e67 , H,,, = 5090 m ( L  = 80 km) ; 

where H and X are expressed in kilometres. D may be defined through H(z) by 

(the fact that  H(0) =!= 0 has obviously no importance in this example). Thus we have 

D = 828 m, L = 112 km, f = lop4, s-l, 

Oregon: R = 900 km, E = 1.2 x 10-l. 

T = 0.96 days, fL = 11.2 m/s; 

D = 937 m, L = 80 km, f = 0.83 x lop4, spl, 

i 
East Australia: R = 1150 km, e = 7 x i T = 2 days, f L  = 6.6 m/s. 

The values of V and 5”’ in the various cases are given in table 1 ,  where the evolution 
equations corresponding t o  each case are also reported. 

From table 1 it  can be seen that although Titrong for Oregon is very small (only 
8 days), the corresponding Qstrong is so high (130 cm/s versus the observed value of 
about 20 cm/s) that  it seems unlikely that one can ever observe nonlinear effects off 
the Oregon coast, except for the resonant interaction between shelf waves, which does 
indeed play a significant role on this shelf (Hsieh & Mysak 1980). However, were 
strongly nonlinear shelf waves generated, their profile would very rapidly change, 
following the evolution given by (20). 

I n  fact, along the East Australian coast the value Qlstrong = 46 cm/s is likely to be 
observed (it must be borne in mind that V gives only the order of magnitude of the 
current oscillation, not its real amplitude). There are still no current data available 
for shelf waves on this shelf, but we can compare this value to  the theoretical ones 
obtained by Gill & Schumann (1974) in a fundamental article on the generation of 
long shelf waves by wind stress. It was shown that in a linear non-dispersive model 
applied to the East Australian coast, a wind stress of 1 dyn/cm2 generates shelf waves 
with current amplitudes of 22 cm/s and 17 cm/s for the first two modes respectively 
(the energy of the remaining modes being negligible) and one can see that the ratio 
between Vstrong and these values ( z 2) is much smaller than the ratio between such 
values and Vweak ( z 7) .  

Therefore these two shelf waves generated by the wind stress according to  
Gill-Schumann’s theory are then subjected to a free evolution that would exhibit the 
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Oregon shelf East Australian shelf 

9 s  Evolution equation V (cm/s) 5”’ (days) V (cm/s) 5”’ (days) 

3 5 2 €-‘((Ait-~~A,,)+p~AAiyVr = 0 1.9 66 0.22 408 

4 2 c-’(Azt-Ei Aiy) +pi A i y y y  16 66 3.2 408 
(n = 6) (9 = 5) (9 = 5) (9 = 5 )  

+ Y t A , A , y +  C y j k A j A , g  = 0 
3 . k  

130 8 46 28 

f yi Ai A,,  + yjk A j  A,, = 0 
j. k 

j + k  

TABLE 1. For each value of q, the value of Y, the  corresponding evolution equation for the A&, t )  
(in the case H ,  = 0) and the values of V and T’ for both the Oregon and the East Australian shelves 
are given. 

steepening of their fronts and their mutual nonlinear interaction, instead of travelling 
undisturbed as a linear nondispersive theory would forecast. The time Tgtrong is not 
as small as in the previous case but it is still Titrong FZ iqife for the gravest mode and 
TLtrong z zife for the second mode, so that nonlinear effects should not be neglected 
when modelling the free evolution of the waves under consideration. 

5 .  Conclusions 
We have studied the free propagation of long barotropic continental shelf waves 

over uniform and weakly non-uniform shelves. If N (the lengthscale used to 
non-dimensionalize the surface displacement y) is expressed as N = CUD (where E is 
the divergence parameter and D is the mean depth) we find that, if q 2 5, the wave 
amplitudes satisfy (14) for uniform shelves or (26) for weakly non-uniform shelves, 
if q = 4 the amplitudes satisfy (19) or (27), and finally if q = 3 they satisfy (20) or 

( 2 8 ) .  
The case q = 3 (which we have called ‘strongly’ nonlinear) is the most interesting, 

because the corresponding dynamics cannot be approximated by a linear non- 
dispersive model (as is the case for linear or weakly nonlinear waves), so that (20) 
and (28) may have a practical application. This case is also interesting as far as the 
interpretation of observations is concerned because in some significant cases (for 
instance off the East Australian coast) shelf waves may be generated with q FZ 3. 

Finally we note that the model equations derived in the various cases can be used 
in order to simulate numerically the dynamics of free long shelf waves (the author 
is currently engaged in this numerical work). This would permit the scattering 
processes due to nonlinear interactions and induced by the longshore variations in 
bottom topography to be studied. The equations valid for weakly non-uniform 
shelves might be particularly useful in modelling more realistic situations. In  all cases, 
comparatively few modes (say the first two or three) should be sufficient in order to 
obtain a good description of the physical processes involved. 
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